Skip to content

Strategy Development

Developing custom trading strategies is central to Algo.Py. This section explains how to create, test, and contribute your strategies.

Contributing Strategies

  1. Create a New Python File:
    Place your new strategy (e.g., my_new_strategy.py) in the strategy/public directory.

  2. Implement the Strategy Class:
    Inherit from StrategyBaseClass (in strategy/strategy_builder.py) and implement the run method.

  3. Automatic Registration:
    Strategies in the strategy/public directory that inherit from StrategyBaseClass are automatically discovered and registered.

  4. Test Your Strategy:
    Use the backtesting functionality to validate performance.

Creating a Custom Strategy

Below is an example implementation:

from strategy.strategy_builder import StrategyBaseClass
import pandas as pd
from typing import Tuple, Dict

class MyCustomStrategy(StrategyBaseClass):
    def __init__(self, param1: int = 10, param2: float = 0.5):
        super().__init__(name="My Custom Strategy")
        self.param1 = param1
        self.param2 = param2

    def run(self, ohlcv_data: Dict[str, pd.DataFrame]) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
        entries = {}
        exits = {}
        close_prices = {}
        open_prices = {}

        for symbol, df in ohlcv_data.items():
            # Replace with your custom logic
            entries[symbol] = pd.Series(False, index=df.index)
            exits[symbol] = pd.Series(False, index=df.index)
            close_prices[symbol] = df['close']
            open_prices[symbol] = df['open']

        return (
            pd.DataFrame(entries),
            pd.DataFrame(exits),
            pd.DataFrame(close_prices),
            pd.DataFrame(open_prices),
        )

Testing Strategies

  • Backtesting: Run your strategy against historical data.
  • Live Monitoring: Check real-time performance via the Strategy Monitor dashboard.

Considerations

  • Data Integrity: Ensure proper handling of missing values and duplicate timestamps.
  • Performance: Optimize computations, especially for high-frequency data.
  • Avoid Overfitting: Validate your strategy using separate hold-out data.
  • Costs & Slippage: Simulate transaction fees and slippage.
  • Error Handling: Implement robust error handling to avoid crashes.